OK, first I want to bring back 4 equations from last time…
sy=(1/2)at2+vyt+s0
sx=vxt
vx=vcosθ
vy=vsinθ
sx=vxt
vx=vcosθ
vy=vsinθ
…and a trigonometric identity.
1/(cos2θ)=tan2θ+1
Now we can derive a new equation to fit what we’ll do today.
sx=vxt
↓
t=sx/vx
↓
t=sx/(vcosθ)
sy=(1/2)at2+vyt+s0
↓
t=sx/vx
↓
t=sx/(vcosθ)
sy=(1/2)at2+vyt+s0
Since s0 is the origin, it equals 0 and would not need to be included.
sy=(1/2)at2+vyt
↓
0=(1/2)at2+vyt-sy
↓
0=(1/2)at2+vsinθt-sy
↓
0=(1/2)a(sx/(vcosθ))2+vsinθ(sx/(vcosθ))-sy
↓
0=((asx2)/v2)(1/cos2θ)+sx(sinθ/cosθ)-sy
↓
0=(asx2/v2)(tan2θ+1)+sxtanθ-sy
↓
0=asx2/v2•tan2θ+sxtanθ+ asx2/v2-sy
↓
0=(1/2)at2+vyt-sy
↓
0=(1/2)at2+vsinθt-sy
↓
0=(1/2)a(sx/(vcosθ))2+vsinθ(sx/(vcosθ))-sy
↓
0=((asx2)/v2)(1/cos2θ)+sx(sinθ/cosθ)-sy
↓
0=(asx2/v2)(tan2θ+1)+sxtanθ-sy
↓
0=asx2/v2•tan2θ+sxtanθ+ asx2/v2-sy
No comments:
Post a Comment